Genomic Scan Reveals Loci under Altitude Adaptation in Tibetan and Dahe Pigs
نویسندگان
چکیده
High altitude environments are of particular interest in the studies of local adaptation as well as their implications in physiology and clinical medicine in human. Some Chinese pig breeds, such as Tibetan pig (TBP) that is well adapted to the high altitude and Dahe pig (DHP) that dwells at the moderate altitude, provide ideal materials to study local adaptation to altitudes. Yet, it is still short of in-depth analysis and understanding of the genetic adaptation to high altitude in the two pig populations. In this study we conducted a genomic scan for selective sweeps using FST to identify genes showing evidence of local adaptations in TBP and DHP, with Wuzhishan pig (WZSP) as the low-altitude reference. Totally, we identified 12 specific selective genes (CCBE1, F2RL1, AGGF1, ZFPM2, IL2, FGF5, PLA2G4A, ADAMTS9, NRBF2, JMJD1C, VEGFC and ADAM19) for TBP and six (OGG1, FOXM, FLT3, RTEL1, CRELD1 and RHOG) for DHP. In addition, six selective genes (VPS13A, GNA14, GDAP1, PARP8, FGF10 and ADAMTS16) were shared by the two pig breeds. Among these selective genes, three (VEGFC, FGF10 and ADAMTS9) were previously reported to be linked to the local adaptation to high altitudes in pigs, while many others were newly identified by this study. Further bioinformatics analysis demonstrated that majority of these selective signatures have some biological functions relevant to the altitude adaptation, for examples, response to hypoxia, development of blood vessels, DNA repair and several hematological involvements. These results suggest that the local adaptation to high altitude environments is sophisticated, involving numerous genes and multiple biological processes, and the shared selective signatures by the two pig breeds may provide an effective avenue to identify the common adaptive mechanisms to different altitudes.
منابع مشابه
Genetic Diversity, Linkage Disequilibrium and Selection Signatures in Chinese and Western Pigs Revealed by Genome-Wide SNP Markers
To investigate population structure, linkage disequilibrium (LD) pattern and selection signature at the genome level in Chinese and Western pigs, we genotyped 304 unrelated animals from 18 diverse populations using porcine 60 K SNP chips. We confirmed the divergent evolution between Chinese and Western pigs and showed distinct topological structures of the tested populations. We acquired the ev...
متن کاملIdentifying molecular signatures of hypoxia adaptation from sex chromosomes: A case for Tibetan Mastiff based on analyses of X chromosome
Genome-wide studies on high-altitude adaptation have received increased attention as a classical case of organismal evolution under extreme environment. However, the current genetic understanding of high-altitude adaptation emanated mainly from autosomal analyses. Only a few earlier genomic studies paid attention to the allosome. In this study, we performed an intensive scan of the X chromosome...
متن کاملHIGHLIGHTED TOPIC Hypoxia Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era
Petousi N, Robbins PA. Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era. J Appl Physiol 116: 875–884, 2014. First published November 7, 2013; doi:10.1152/japplphysiol.00605.2013.—The Tibetan Plateau is one of the highest regions on Earth. Tibetan highlanders are adapted to life and reproduction in a hypoxic environment and possess...
متن کاملHuman adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era
The Tibetan Plateau is one of the highest regions on Earth. Tibetan highlanders are adapted to life and reproduction in a hypoxic environment and possess a suite of distinctive physiological traits. Recent studies have identified genomic loci that have undergone natural selection in Tibetans. Two of these loci, EGLN1 and EPAS1, encode major components of the hypoxia-inducible factor transcripti...
متن کاملIdentifying Signatures of Natural Selection in Tibetan and Andean Populations Using Dense Genome Scan Data
High-altitude hypoxia (reduced inspired oxygen tension due to decreased barometric pressure) exerts severe physiological stress on the human body. Two high-altitude regions where humans have lived for millennia are the Andean Altiplano and the Tibetan Plateau. Populations living in these regions exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. Alt...
متن کامل